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SUMMARY

A large eddy simulation based on �ltered vorticity transport equation has been coupled with �ltered
probability density function transport equation for scalar �eld, to predict the velocity and passive scalar
�elds. The �ltered vorticity transport has been formulated using di�usion-velocity method and then
solved using the vortex method. The methodology has been tested on a spatially growing mixing layer
using the two-dimensional vortex-in-cell method in conjunction with both Smagorinsky and dynamic
eddy viscosity subgrid scale models for an anisotropic �ow. The transport equation for �ltered probabil-
ity density function is solved using the Lagrangian Monte-Carlo method. The unresolved subgrid scale
convective term in �ltered density function transport is modelled using the gradient di�usion model.
The unresolved subgrid scale mixing term is modelled using the modi�ed Curl model. The e�ects of
subgrid scale models on the vorticity contours, mean streamwise velocity pro�les, root-mean-square
velocity and vorticity �uctuations pro�les and negative cross-stream correlations are discussed. Also
the characteristics of the passive scalar, i.e. mean concentration pro�les, root-mean-square concentration
�uctuations pro�les and �ltered probability density function are presented and compared with previ-
ous experimental and numerical works. The sensitivity of the results to the Schmidt number, constant
in mixing frequency and in�ow boundary conditions are discussed. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Numerically, the techniques used in the simulation of shearing �ows can be categorized into
Eulerian methods and Lagrangian methods. In Eulerian methods, such as �nite di�erence and
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�nite element methods, computational requirements are a�ordable but these methods entail nu-
merical dissipation. Lagrangian methods such as vortex methods, are immune from numerical
dissipation but are computationally expensive. The vortex-in-cell (VIC) method combines the
best features of Eulerian methods and Lagrangian methods. In VIC, Eulerian method is used
to calculate the velocity �eld and Lagrangian method is used to track the vortices by using an
interpolation scheme to transfer vorticity and velocity between the nodes of the grid and the
vortices. The numerical dissipation in VIC comes from the interpolation scheme and from the
Eulerian method used to calculate the velocity �eld. However the overall numerical di�usion
in VIC is reduced relative to the Eulerian methods [1–4]. This is done at the expense of the
computational requirements (CPU and memory) that are more expensive than the Eulerian
method (such as �nite di�erence) but are reduced relative to the pure Lagrangian method.
Cottet and Koumoutsakos [5] discussed clearly the advantages and disadvantages of the VIC
and �nite-di�erence. In VIC, the vorticity transport is handled exactly by following the tra-
jectories of vortex elements whereas �nite di�erence assumes that the solution is represented
by a polynomial. Therefore, VIC is more robust. Furthermore, the solution of the convection
part of VIC does not require a time step governed by a CFL condition as in an explicit �nite
di�erence scheme. However Eulerian methods (such as �nite-di�erence) are more �exible
when a viscous boundary condition such as �ow around obstacles is calculated. In this case
the Eulerian–Lagrangian domain decomposition technique is used where the Eulerian method
is used around obstacles and a pure Lagrangian method between obstacles.
Vortex methods have been applied to various �ow con�gurations [4]. In particular, numerous

studies simulating two-dimensional temporal and spatially growing mixing layers have been
carried out. The Lagrangian technique was used in the simulation of the spatially growing
unforced mixing layer by Ashurst [6], Kuwahara and Takami [7], Ghoniem and Ng [8],
Inoue and Leonard [9], and to the forced mixing layer by Ghoniem and Ng [10], Inoue
and Leonard [9] and Inoue [11]. Aref and Siggia [12] used the VIC to simulate a temporal
mixing layer and Abdolhosseini and Milane [13] extended the VIC to a spatially growing
mixing layer. Generally, these studies showed that the roll-up of pair of lumps is the primary
growth mechanism of mixing layers and is responsible for the entrainment of the surrounding
non-turbulent �uid.
In recent works, the Lagrangian vortex method has been developed in the context of large

eddy simulation (LES) by �ltering the vorticity transport equation and modelling the subgrid
scale (SGS) velocity and vorticity �uctuations using the eddy viscosity SGS model [14].
Both Smagorinsky and dynamic eddy viscosity SGS models were implemented and constants
in both SGS models were obtained speci�cally for the vorticity equation. In the Lagrangian
representation, the e�ect of eddy viscosity model was implemented by modifying the strength
of the particles using the particle strength exchange (PSE) [15]. Other LES based on core-
spreading, valid in the limit of vanishing viscosity [5, 16], have been used by Milane and
Nourazar [17, 18]. Cottet [19] presented SGS model based on a rigorous analysis of truncation
error of the �ltered vorticity transport and developed a scheme based on the PSE method for
small-scale contribution.
The di�usion-velocity method is an alternative way for simulating the di�usion equation

and can be extended to an eddy-viscosity-based LES formulation. Originally, Ogami and
Akamatsu [20] introduced the method as an alternative to the random walk solution of the
di�usion equation in order to extend the solution to Reynolds number values, below the lower
limit of applicability of the random walk. The method was used by Clarke and Tutty [21]
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in predicting various �ows past circular cylinders. Recently, Milane [22] has developed a
LES based on di�usion-velocity method for the vorticity transport using Smagorinsky eddy
viscosity SGS model.
In several investigations by Ghoniem and Givi [3], Ghoniem and Heidarinejad [23] and

Knio and Ghoniem [24], a sheared layer was simulated using the vortex method to solve the
vorticity transport and the scalar element method to solve the scalar transport. Both the vortex
method and the scalar element method are based on the discretization of the vorticity and
the scalar gradients into elements which are transported along particle paths. An alternative
method widely used to simulate the scalar �eld in turbulent �ows is based on the solution
of the transport equation for probability density function (PDF) of scalar. Pope [25–27] has
developed transport equations for PDFs which were solved using the Monte-Carlo technique.
The main advantage of PDF method is that chemical reaction is treated without approximation,
besides the fact that the PDFs yield all the statistical information regarding the scalar �eld.
Gao and O’Brien [28] introduced the transport equation for the large eddy PDF (LEPDF) for
a chemically reacting �ow. Also Colucci et al. [29] developed LES based on PDF, termed
the �ltered density function (FDF) for a chemically reacting turbulent �ow �eld. The reacting
�eld was obtained from the solution of the �ltered Navier–Stokes equation and the FDF
transport. The unresolved subgrid convective term in the FDF transport is modelled using the
gradient di�usion model. The methodology was assessed using a temporal mixing layer and
a spatially developing planar jet. Jaberi et al. [30] developed a methodology named ‘�ltered
mass density function’ (FMDF) by extending the work of Colucci et al. [29] to variable
density and reacting �ows at low Mach numbers. Zhou and Pereira [31] implemented the FDF
methodology developed by Colucci et al. [29] to investigate the two-dimensional, spatially
developing, reacting and non-reacting, constant-density, mixing layer in a �ow regime prior
to the mixing transition similar to the experiment of Masutani and Bowman [32]. The FDF
results showed satisfactory agreement with experimental measurements.
Experimentally, Konrad [33] studied the extent of passive scalar mixing in a gaseous mixing

layer with a velocity ratio r=0:3 (ratio of low-to-high velocity). In the pre-mixing transition
region, the PDFs are non-marching, i.e. the most probable concentration is the same across
the mixing layer and is biased toward the high-speed side. Batt [34] investigated experimen-
tally scalar mixing in a gaseous mixing layer with r=0:08. The PDFs showed marching
behaviour across the mixing layer, i.e. the most probable concentration varies across the
layer, with the most probable value on each side of the layer being closer to the free stream
value of that side. Also the root-mean-square (rms) scalar �uctuations showed a bimodal be-
haviour, i.e. a dip in the rms pro�le, with an asymmetry in the pro�le. Masutani and Bowman
(M and B) [32] examined the structure of scalar �eld in gaseous mixing layer with r=0:5,
in the pre-mixing transition region. The PDFs were non-marching across the mixing layer
similar to the results of Konrad [33]. Recently, Pickett and Ghandhi [35] reported results
for r=0:2; 0:3 and 0.4, in gaseous mixing layers. Their study suggested that non-marching
PDFs produces a triple in�ection point in the mean concentration pro�les, whereas marching
PDFs produce a single in�ection point, as pointed out in the earlier study of Clemens and
Mungal [36].
The purpose of this study is to extend the LES, based on the �ltered vorticity transport

which was formulated using the di�usion-velocity method in Reference [22], by including
a dynamic SGS model and the FDF transport for passive scalar to predict the velocity and
scalar �elds. The methodology will be tested on a spatially developing mixing layer. The
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�ltered vorticity transport is solved using VIC inconjunction with both the Smagorinsky and
dynamic eddy viscosity SGS models. The FDF transport equation for scalar is solved using the
Lagrangian Monte-Carlo method. The subgrid convective term is modelled using the gradient
di�usion model and the mixing is modelled using the modi�ed Curl model. Comparison is
made with two-dimensional experimental results of Masutani and Bowman [32] and numerical
simulation of Zhou and Pereira [31]. The mean velocity, the rms velocity �uctuations and
negative velocity cross-correlation, mean scalar concentrations, rms scalar �uctuations and
FDFs are presented. The e�ect of Schmidt number, constant in mixing frequency and in�ow
boundary conditions on scalar �eld is discussed.

2. VORTEX-IN-CELL

2.1. Vorticity equation

The continuity and vorticity transport equations for an incompressible �ow and viscous �uid
are, respectively,

@ui

@xi
=0 (1)
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where !i represents the component of the vorticity vector !, ui and uj represent the com-
ponents of the velocity vector u, and � is the kinematic viscosity. The left-hand side of
Equation (2) includes the rate of change of vorticity in time and due to convection, respec-
tively. The �rst term on the right-hand side is the vortex stretching term, and the second term
on the right-hand side is the viscous di�usion.
For a 2D �ow parallel to (x; y) plane, the velocity vector is u= u(x; y; t), the vorticity

vector !z reduces to one component in the z direction, perpendicular to the (x; y) plane, and
the stretching term vanishes. Therefore Equation (2) reduces to

@!z

@t
+ uj

@!z

@xj
= �

@2!z

@xj@xj
(3)

A di�erent form of vorticity equation can be written if the continuity (Equation (1)) is
combined with the vorticity equation (Equation (3)) assuming constant viscosity as
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Equation (4) is similar to the equation used by Ogami and Akamatsu [20] in the development
of the di�usion-velocity method.
By �ltering Equation (4), the transport equation for the �ltered spanwise component !z,

developed for an eddy viscosity based SGS model, is obtained as [22]
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where [ud= − ((�+ �Tx)= �!z)@ �!z=@x, vd= − ((�+ �Ty)= �!z)@ �!z=@y] are the components of the
di�usion velocity governed by molecular di�usion and by the components of eddy viscosity
from SGS model (�Tx; �Ty), and u and v are the components of the �ltered velocity.
The Poisson’s equation used in VIC method is obtained using the de�nition of the �ltered

spanwise component,

�!z=
@�v
@x

− @ �u
@y

(6)

Then using the �ltered continuity equation,

@ �u
@x
+

@�v
@y
=0 (7)

the components of the velocity u can be expressed as gradients of the stream function  ,

u=
@ 
@y

; v= − @ 
@x

(8)

Combining Equations (6) and (8), Poisson’s equation is obtained as

∇2 = − �!z (9)

2.2. SGS models

The SGS models are function of the governing equations, i.e. vorticity transport or momentum
transport. Few works using the vorticity transport are available. Mans�eld et al. [14] obtained
the constant in the Smagorinsky SGS model by balancing enstrophy production and dissipation
for homogeneous and isotropic �ow. Therefore, it has been adopted in this study. Furthermore,
the Smagorinsky SGS model has been extended to anisotropic �ow [37, 38] as

�Tx=C2r (�
3)2=9�4=3

x (2SijSij)1=2

and

�Ty=C2r (�
3)2=9�4=3

y (2SijSij)1=2 (10)

where |S| ≡ (2SijSij)1=2 is the modulus of the strain rate and the constant Cr =0:12.
Equation (10) is an extension of Smagorinsky model developed for isotropic �ow to anisotro-
pic �ow by simply using di�erent �lter sizes �x and �y, in x and y directions, respec-
tively, with �=(�x�y)1=2. The �lter sizes are multiple (greater than one) of grid size. The
Smagorinsky SGS model is too dissipative (see for example Reference [39]), therefore the
less dissipative dynamic procedure developed in Reference [14] is also used.
The dynamic implementation requires calculating Cr at each node and at each time-step. As

shown in Reference [14], two equations are generated. The �rst one is the ‘�ltered vorticity
equation’ using the physical �lter size � and the second one is the �ltered ‘�ltered vorticity
equation’ obtained using an additional test �lter �′¿�, in such a way that �′=2�. Then
the �rst equation is �ltered again using the test �lter and subtracted from the second equation
assuming the same subgrid scale model in both equations. This yields an expression for the
constant as

l=C2r m (11)
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where

l= lc + ls (12)

m=mD +mZ (13)

For a 2D simulation

ls =0 (14)
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The constant Cr is uniquely speci�ed in 2D simulation, unlike 3D simulation where the
constant is over speci�ed and error minimization is invoked. For any �ltered variable calcu-
lated at the nodes, such as !z, double �ltering, using either top-hat �lter or Gaussian �lter,
is obtained using the di�erential interpretation of the �lter where terms higher than second
order are neglected [38].

2.3. Vortex-in-cell

The VIC methodology has been originated by Christiansen [40] and recent developments are
discussed in Reference [5]. Also the methodology that extends the di�usion-velocity method
to LES using an eddy viscosity SGS model and solves the vorticity transport using the vortex
method is described in Reference [22]. In this section, a brief description of the method is
presented. The vorticity �eld is discretized into N vortex blobs, each with circulation �i.
Therefore the vorticity �eld is expressed as !(x)=

∑N
i= 1 �i��(x − xi), where ��(x − xi) is

the smoothing function, x representing the coordinate at which the vorticity is calculated, xi
the coordinate of the centre of the vortex blob, and � the core radius. The core radius is
equal to the grid size and the circulation is identical to the product of vorticity and volume
of the vortex blob. In VIC, the vorticity is transferred from the vortex blobs to the nodes of a
grid, using an interpolation technique which is identical to the smoothing function. The area-
weighting scheme [41] is used in this study. The components of the velocity u=(u; v) at the
nodes are calculated using Equation (8) after solving the Poisson’s equation (Equation (9))
using the extrapolated Liebmann’s method. The components are transferred to the location
of each vortex blob, using the area-weighting scheme. Then the vortex blobs are convected
and the position vector of the vortex blob centre �=(xi; yi) is calculated by integrating the
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equation of motion of a material point

d�=dt= u(�(x; y; z; t)) (18)

using the improved Euler’s method where the predictor is

�∗(t +�t)= �(t) + u�t (19a)

and the corrector is

�(t +�t)= �(t) + (u+ u∗)�t=2 (19b)

where �t is the time-step and the values denoted by the superscript (*) correspond to the
values obtained by the predictor.
After completing the above operation, the components of the di�usion velocities (udi= −

((�+�Tx)= �!z)@ �!z=@x; �di= − ((�+�Ty)= �!z)@ �!z=@y are calculated at the nodes, and transferred
to the centre of the vortex blob using the area-weighting scheme. Then the position vector of
the vortex blob is calculated using Equations (19a) and (19b) in which u= udi. The di�usion
velocity could be unreasonably high in regions of a small vorticity and non-zero vorticity
gradient because it is inversely proportional to the vorticity. This problem is remedied by
setting the components of the di�usion velocity to zero whenever the vorticity at the nodes
is less than 0.1% of the vorticity associated with a vortex particle.
The smoothing function is used in order to remove the singularity at the origin of the

Biot–Savard Law, which relates the velocity to the vorticity. Otherwise large velocities are
created in the neighbourhood of the discretized vortices, which causes numerical instabilities.
To remove this di�culty, �nite core size vortices or blob vortices are used instead of point
vortices [42]. Thus inside the core, the velocity is smooth and is �nite at the centre of the
core. The smoothing function used in this study is the �rst-order area-weighting scheme. It
distributes the vorticity of each vortex blob among the nearest four grid points (Figure 1(a)).
That is the in�uence of each vortex blob extends to within one grid, with weight proportional
to an area fraction, yielding a higher weight as the distance between the node and vortex blob
is smaller. The more accurate third-order M′

4 scheme has also been tested. It contributes to
the nearest 16 grid points, i.e. its in�uence extends to within two grids. Flow �eld results for
the present mixing layer obtained using the area-weighting scheme have been compared with
the ones obtained using the M′

4 scheme in Reference [22]. Results suggest that the sensitivity
to the smoothing function is quite small probably because the number of vortex blobs used
is high. Therefore the M′

4 scheme was not used in the interest of reducing the computational
time. The computational time is reduced by about 10% when the area-weighting scheme is
used in comparison with the M′

4 scheme.
It is noted that the �nite-di�erence scheme equivalent to VIC may be based on ( ; !) for-

mulation, i.e. on the solution of Equations (5) and (9). The VIC and �nite-di�erence have in
common the Poisson’s equation (Equation (9)). Then in �nite di�erence the vorticity transport
is discretized and solved, whereas in VIC the equation of motion for a material point is used
where the velocity used to convect the vortex blob is governed by the velocity obtained from
the solution of Poisson’s equation and by the di�usion-velocity. From a computational stand-
point, the VIC requires additional memory because in addition to the vorticity and velocity
calculated at the nodes which are common to both methods, the coordinates of the vortex
blobs must be saved as time is marching.
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2.4. Boundary and initial conditions

The computational domain in Figure 1(b) consists of a rectangular grid with uniform grid
size in each direction and in general (�x �= �y). The lower left corner of the grid is located
at x=1 and y=1. The boundary conditions for LES are the same as for the un�ltered
case because they are assumed to be governed by the large scale. The Neumann conditions
apply to the in�ow and out�ow boundaries with  0;0 = 0 at x=0 and y=0. At in�ow, two
laminar boundary layers, which develop on high- and low-speed side of splitter plate, are

ω(4)ω(3)

ω(2)ω(1)

A1A2

A3
A4

(i+1,j+1)(i,j+1)

(i+1,j)(i,j)
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(M,1)

(0,0)

(1,N)

Splitter Plate

(1, 1)
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Inflow

Velocity Profile
Outflow

Velocity Profile
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UH

y

x

δx

δy
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(b)

Figure 1. (a) Two-dimensional area-weighting scheme in the VIC method; and (b) computational
domain, rectangular grid, initial position of the vortices and boundary conditions.
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represented by �fth-order polynomials. Another �fth-order polynomial is used to patch the two
boundary layers to avoid a zero velocity at the edge of the splitter plate. This will prevent
the accumulation of Monte-Carlo particles at the node which is closest to the edge of the
splitter plate. The Monte-Carlo particles are used in the solution method for the FDF equation
(see Section 3.2). The in�ow velocity pro�le re�ects the development of the wake at some
distance from the edge of the splitter. The out�ow stream function pro�le corresponds to an
error function velocity pro�le in such a way that,

(@ =@y)N; j=(�U=2) erf{�(y − yov)=(x − xv)}+Uc (20)

where subscript N corresponds to the node in x direction at the out�ow, j corresponds to the
node in the y direction, �U =UH −UL is the velocity di�erence across the splitter plate, UH

and UL are the velocities of the high- and the low-speed side, respectively, yov is the ordinate
of the centreline, xv is the virtual origin, � is the spreading parameter and Uc=(UH +UL)=2
is the average velocity. In addition in order to simulate the Kelvin–Helmholtz instability
mechanism, the vortex closest to the edge of the splitter plate is moved vertically by a small
distance (perturbation), given by a sinusoidal function of time operating at the fundamental
frequency (f), of the unforced mixing layer as

y(t)=Ax sin(2�ft) (21)

where A=0:5Uc�t is the amplitude and x represents a small percentage of A (x=3:0% in
this study). The fundamental frequency (f) is calculated using f �i=(2Uc)≈ 0:02 [43] where
�i is the momentum thickness at the beginning of the region of linear growth. The factor A
has been used by Inoue [11] where a forced mixing layer was investigated. In this study, the
small value of x=3:0% used ensures that the mixing layer is in the unforced mode.
Also rather than specifying an out�ow boundary condition, i.e. Equation (21), the convective

out�ow boundary condition was considered. Results showed no signi�cant di�erence up to x=H
≈ 0:25, after which the momentum thickness growth rate is faster as compared to the situation
where Equation (20) is applied. Therefore the error function out�ow boundary condition has
been adopted because it constrains the growth rate of the momentum thickness and yields a
slope for the linear growth region in close agreement with the experiment [13].
Furthermore, slip conditions are assumed for the top and bottom boundaries. The Dirichlet

condition is used for the bottom boundary located at yL=1 as,

 i;1 =yLUL (22)

Equation (22) is consistent with  i;0 = 0 at y=0. For the top boundary

 i;N =ULysp +UH (yi;N − ysp) (23)

where ysp is the splitter plate y location and N corresponds to any node at the top boundary.
Initially, the velocity discontinuity across the splitter plate is simulated using a vortex sheet,

which is discretized into a row of vortex blobs as shown in Figure 1(b). At time t=0, the
vortex blobs are equidistant and separated by a distance d=L=M , where M is the number of
vortices and L is the computational domain length. The vortex closest to the edge of the splitter
plate is moved vertically using Equation (21) to initialize the Kelvin–Helmholtz instability.
The un�ltered total circulation in the computational domain is L(UH −UL). The circulation is
equally distributed among the M vortices as �i=L(UH −UL)=M =d(UH −UL). Furthermore,
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if at the end of each time step �t, de�ned as the characteristic time �t=d=Uc, a vortex with
circulation �i is introduced at the trailing edge of the splitter plate, the vorticity generation
rate is �i=�t=(UH −UL)Uc and therefore the Kutta condition is satis�ed. The oldest vortex,
i.e. the vortex with the largest residence time, is discarded from the calculations when a new
vortex is introduced at the edge of the splitter plate. Furthermore, the vortices can move
freely in and out through the out�ow boundary to avoid the collection of vortices at the end
of the computational domain. The motion of the vortices outside the computational domain
is assumed to be governed by the velocity at the out�ow boundary. In the LES, the initial
vorticity (or circulation) should be �ltered. As discussed in References [14, 19], smoothing
the vorticity �eld (or circulation) using ��(x−xi), is an approximation of the �ltered vorticity
�eld, with the smoothing function acting as the spatial �lter.

3. FDF’S TRANSPORT EQUATION

3.1. FDF transport

The transport equation for the FDF (PL) of a non-reactive scalar, has been derived by �ltering
the �ne-grained PDF to yield [29]
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where �= �=Sc is the molecular di�usivity, Sc is the Schmidt number, and �Tx and �Ty are
the turbulent di�usivities related to �Tx and �Ty de�ned by Equation (10) via the turbulent
Schmidt number ScT , as �Tx= �Tx=ScT and �Ty= �Ty=ScT . The mixture fraction 	 is de�ned
as 	=(c − cU )=(cL − cU ), where c is the concentration of passive scalar, cL and cU are the
concentrations below and above splitter plate.
In Equation (24), the three terms on the L.H.S. are in closed form. The �rst term is the

transient term, the second and third terms are the convection terms. On the R.H.S., the �rst
two terms represent the contributions of subgrid convective �ux modelled using the gradi-
ent di�usion model via �Tx and �Ty and of molecular di�usion. The third term in which
[�(|@	=@x|2 + |@	=@y|2)|�] indicates the expected value of [�(|@	=@x|2 + |@	=@y|2)] condi-
tional on the satisfaction of the constraint � represents molecular mixing and is modelled
using the modi�ed Curl model. Pairs of particles that are within a grid are selected randomly
as

nm=
!fNg�t (25)

where Ng denotes the total number of particles in the grid, nm the number of pairs of particle
that will mix, !f is an average mixing frequency de�ned within the grid and the coe�cient

=3. Following Colucci et al. [29] and for the anisotropic �ow considered in this study the
mixing frequency is !f=C	([(� + �Tx)=�2

x + (� + �Ty)=�2
y]=2), where �x and �y are the
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�lter sizes in x and y directions, respectively, used in SGS models and C	 ≈ 3. The mixing
frequency at the location of a particle is obtained by transferring the mixing frequency from
nodes to the particle using interpolation technique. Then the average mixing frequency !f

is approximated as the arithmetic average of the frequencies at the location of the particles
which are within the grid.

3.2. Monte-Carlo simulation

The scalar FDF transport equation (Equation (24)) is solved using the Lagrangian Monte-
Carlo method [44] rather than using the Eulerian method [25] because in the context of LES
it is more accurate as pointed out by Colucci et al. [29]. The Monte-Carlo particles for scalar
�eld governed by the FDF transport equation are di�erent from the vortex particles for the
�ow �eld governed by vorticity transport. Therefore, the two systems of particles are used.
Even though both systems are governed by similar physics, i.e. convection and di�usion,
however initial conditions, magnitudes, and numerical approximations are di�erent. This ne-
cessitates two di�erent systems of particles. The Monte-Carlo particles are initially spread
uniformly throughout the computational domain of Figure 2(b). Each particle is identi�ed
by a representative value of the scalar concentration �. Besides mixing discussed above, the
particles are subjected to convection and turbulent transport. The time evolution of the par-
ticle position Xi(t)= [xi(t); yi(t)] with property � is governed by the Langevin equation [44]
given as

dXi(t)=Di(X (t); t) dt + E(X (t); t) dWi(t) (26)

where Di and E are the drift and di�usion coe�cients, respectively, and Wi denotes the
Wiener–Levy process. These coe�cients are

Di=(ui; vi) +
(
@(� + �Tx)

@xi
;
@(� + �Ty)

@yi

)

and

E=(
√
2(� + �Tx);

√
2(� + �Ty)) (27)

The Wiener–Levy process is identical to the random walk obtained from a Gaussian
distribution with zero mean and standard deviation [2(� + �Tx)�t]1=2 in x direction and
[2(� + �Ty)�t]1=2 in y direction, respectively.

3.3. Boundary and initial conditions

The computational domain used for the Monte-Carlo simulation in Figure 2(b) is similar
to the one used for �ow �eld in Figure 1(b). The fast stream above the splitter plate has
an initial concentration of cU =0, and the lower slow stream has an initial concentration of
cL=1. Two in�ow boundary conditions, stepwise pro�le and error function, will be tested.
The error function is given as

c(y)1; j=(�c=2) erf{�(y − yoc)=xv}+ cc

where subscript 1 corresponds to the in�ow x-location and subscript j corresponds to the nodes
in the y direction, �c= cL−cU is the concentration di�erence across the layer, cc=(cL+cU )=2
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Figure 2. (a) Box centred at node and particles with concentration distribution; and (b) computational
domain, rectangular grid, box and boundary condition for scalar �eld.

is the average concentration, � is the spreading rate and yoc is di�erent from yov, the ordi-
nate of centreline of velocity pro�le (Equation (20)). The relation yoc �=yov is similar to the
cross-stream adjustment length used in the ‘wake-modi�ed’ inlet conditions by Soteriou and
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Ghoneim [45], and is necessary in order to obtain predictions that �t the experimental data
and previous numerical simulation. The out�ow boundary condition is not speci�ed (Equa-
tion (24) is parabolic) because the streamwise convection of concentration is very high in
comparison with backward di�usion. Particles are allowed to exit the top, bottom, and the
out�ow boundaries of the computational domain. The domain is replenished at the boundary
node which is opposite to the boundary node from which the particle exists. At in�ow, the
replenished concentrations are de�ned by the in�ow boundary condition, stepwise or error
function (Equation (28)), and at the top and bottom the concentrations assume the fast and
slow free stream values of 0 and 1, respectively.

4. SOLUTION PROCEDURE

The solution procedure to solve the velocity, vorticity and scalar �elds consists of the following
steps:

(a) Initializing by placing the equidistant vortex blobs at the level of the splitter plate and
by assuming arbitrary values for  at the internal nodes together with the boundary
conditions (Equations (20)–(23)).

(b) Initializing the Monte-Carlo particles in the computational domain by prescribing par-
ticles to each grid.

(c) Assigning initial concentration to each particle, using either a stepwise pro�le with
0 above and 1 below the splitter plate, respectively, or the error function (Equation
(28)).

(d) Transferring the vorticity from the vortex particles to the nodes using the interpolation
technique.

(e) Solving the Poisson’s equation (Equation (9)), using a Gauss–Seidel iteration with a
left-to-right sweep of the nodes and bottom-to-top sweep of the lines. Iteration con-
vergence is obtained when the percent di�erence between consecutive  is less than
0.001%.

(f) Computing the velocities u and � at the nodes using Equation (8).
(g) Transferring the velocities at the location of each vortex using the interpolation

technique.
(h) Updating the coordinates of the vortices using the predictor equation (19a).
(i) Computing the SGS components of the eddy viscosity using Equation (10) with either

Cr =0:12 or dynamic calculations of Cr at each node (Equations (11)–(17)).
(j) Computing the components of di�usion velocity (−((�+�Tx)= �!z)@ �!z=@x;−((�+�Ty)= �!z)

@ �!z=@y) at the nodes.
(k) Transferring the di�usion-velocity at the location of each vortex using the interpolation

technique.
(l) Updating the coordinates of the vortices using the predictor equation (19a).
(m) Calculating Di and E using Equation (27) together with mixing frequency at the nodes.
(n) Implementing the corrector by repeating the calculations starting from (d), and replac-

ing Equation (19a) by Equation (19b) in (h) and (l).
(o) Transferring Di and E from the nodes to the location of the particles using interpolation

technique.
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(p) Displacing the particles by approximating Equation (26) using the corrector scheme
(the concentration �eld does not a�ect the �ow �eld therefore it is calculated after the
�ow �eld has been calculated).

(q) Updating the number of particles in grid together with the boundary conditions.
(r) Transferring the mixing frequency from the nodes to the location of the particles using

interpolation technique, calculating the average mixing frequency in each grid, and ob-
taining the number of mixing pairs using Equation (25). The mixing pairs are selected
and new concentrations are calculated.

(s) Introducing a new vortex at the edge of the splitter plate and discarding the oldest one.
(t) Marching in time by repeating the calculations from step (d)–(s).

The �rst and second derivatives are approximated using fourth-order central di�erence
formulas.

5. FLOW FIELD RESULTS

The pro�les of mean velocity, rms longitudinal (rmsu′) and lateral (rmsv′) velocity �uctua-
tions, negative cross-stream correlation (−u′v′), vorticity contours, and rms vorticity �uctu-
ations (rms!′) are presented. The results of the LES with the dynamic eddy viscosity SGS
model will be �rst presented. Then comparison with results obtained without SGS and with
LES using Smagorinsky SGS will be discussed.

5.1. Flow �eld and numerical parameters

The velocity ratio is r=UL=UH =0:5 (ratio of the lower velocity side of the splitter plate to
the higher velocity side) with the free stream velocity above the splitter plate UH =600 cm=s
and below the splitter plate UL=300 cm=s, similar to the parameters used in the experiment
of M and B [32]. The spreading rate is �=35 for r=0:5 [46]. The reported results are for
a viscous �ow condition with �=14:5× 10−2 cm2=s (the kinematic viscosity of air at 18◦C).
The computational domain consists in a 256× 256 anisotropic grid with equidistant grid,

�x=0:5 cm and �y=0:25 cm. The aspect ratio axy= �x=�y=2:0 is consistent with axy=2:0
used by Deardo� [47] and axy=3:7 used by Shumann [48] in LES of channel �ow. Kaltenbach
[49] has reported that the representation of shear �ows is most economical when an anisotropic
grid (i.e. axy ¿ 1) is used because it produces adequate values for ratios of rms velocity �uc-
tuations as shown in Reference [22] where the ratios obtained from LES using Smagorinsky
SGS were comparable to the ratios obtained without SGS when the grid is anisotropic. For all
LES, the �lter sizes are set to twice the grid size in each direction, i.e. �x=2�x and �y=2�y.
At the level of the splitter plate, the shear layer is discretized into a layer of M =2560 equidis-
tant vortex blobs. Therefore, the circulation of each vortex is �i=1:5× 10−3 m2=s, and the
time step �t=d=Uc=11:1× 10−5 s. The coordinate yov in Equation (20) is equal to 33 cm
corresponding to the edge of the splitter plate.
The �ow is allowed to develop for two residence times (i.e. 2M time-steps) before the

statistical calculations are started. Then the mean �ow is obtained using time-averaging over
the next four residence times, and the rms velocity �uctuations, the negative cross-stream
correlation and the rms vorticity �uctuations are calculated using time-averaging over the
next eight residence times.
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5.2. LES run with dynamic eddy viscosity SGS model

The streamwise mean velocity normalized as (U −UL)=(UH −UL) is shown in Figure 3(a) as
a function of the similarity variable �v=(y−y0)=(x−xv) at four downstream locations, where
U is the streamwise mean velocity, y0 is the ordinate of the velocity centreline at x location,
and the virtual origin de�ned as the x location at the intersection of the velocity centreline
with the horizontal line at the level of the splitter plate is xv=4:01 cm. The results of the
numerical simulation are presented in the self-preserving region, which is from x=51 to 77cm,
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Figure 3. Normalized velocity pro�les at four downstream locations for case with dy-
namic eddy viscosity SGS: (a) streamwise mean velocity; (b) rms longitudinal velocity
�uctuations; (c) rms lateral velocity �uctuations; and (d) negative cross-stream correlation.
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i.e. 0:46 x=H6 0:6. The self-preserving region corresponds to the region of linear growth of
the momentum thickness. The pro�les from the experiment of M and B [32] (dark symbols)
are shown as a reference only because direct comparison between un�ltered experimental data
and LES results (�ltered) is unwarranted.
The rms longitudinal (rmsu′) and lateral (rmsv′) velocity �uctuations normalized with �U

are shown in Figures 3(b)–(c), respectively, and the negative cross-stream correlation (−u′v′)
normalized with �U 2 is shown in Figure 3(d). Adequate self-preserving pro�les are obtained
for 0:46 x=H6 0:6. The rmsu′ is shown together with the data from M and B [32]. The
pro�les for the rmsu′ in the simulation are self-similar whereas it decreases in the experimental
data. The experimental trend is probably caused by dissipation due to molecular di�usion as
discussed in Reference [23].

5.3. SGS e�ects

Comparison between three runs is made: a run without SGS, LES using dynamic eddy vis-
cosity SGS and LES using Smagorinsky SGS. Comparison with the run without SGS is made
to verify whether the di�usion-velocity method predict the dissipative e�ect of SGS model.
The LES run with dynamic eddy viscosity SGS is compared with Smagorinsky SGS to ver-
ify whether a lower eddy viscosity leads to less dissipation and therefore validate further
the dissipative nature of the di�usion-velocity method when used in conjunction with a SGS
model. Figures 4(a)–(c) show the downstream evolution of the spanwise vorticity contours
for the three cases. Due to the in�ow mean pro�le, the spanwise vorticity is initially negative
(clockwise) in the computational domain. In the present two-dimensional case, this initial
condition implies that the vorticity is always negative during the calculations. Therefore, Fig-
ures 4(a)–(c) show the magnitude of the vorticity. The contours spread in the free stream
as they develop from the edge of the splitter plate. The maximum contour level decreases
as SGS model is applied consistent with its dissipate nature (see legend). It is 1800 for the
case without SGS in Figure 4(a), 1700 for the case with dynamic eddy viscosity SGS in Fig-
ure 4(b), 1400 for the case with Smagorinsky SGS model in Figure 4(c). Close up of selected
downstream location are shown in Figures 5(a)–(c) which are drawn using identical scale.
Figure 5(a) for the case without SGS indicates that the contours peak at 600, whereas the
contour peak drops to 500 and 300 when dynamic eddy viscosity SGS and Smagorinsky
SGS are used in Figures 5(b) and (c), respectively. The contour levels are further apart
when SGS model is used. Therefore, in the context of the di�usion-velocity method, the SGS
model is dissipative because it decreases the contour peaks and yields coarser contour lines.
Furthermore, as expected, Smagorinsky SGS is more dissipative than dynamic eddy viscos-
ity SGS [39]. This is consistent with the fact that in this study the dynamic constant C2r
was found to be less than the Smagorinsky constant C2r =0:0144. This results in lower eddy
viscosity for dynamic SGS (see peak �Tx=� in Table I).
Pro�les of various statistics are shown in Figures 6(a)–(d) at x=H =0:6 for the three cases

discussed in the previous paragraph. The peaks of rmsu′=�U and rmsv′=�U in Figures 6(a)
and (b), respectively, are higher for LES with dynamic eddy viscosity SGS as compared to the
case with Smagorinsky SGS but lower than the case without SGS. This is again consistent
with the fact that the dynamic eddy viscosity model is less dissipative than Smagorinsky
model. The negative cross-stream correlation (−u′v′=�U 2) in Figure 6(c) is less a�ected by
SGS, consistent with being linked to the mean by the mean momentum equation and the mean
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Figure 4. Vorticity contours for case: (a) without SGS; (b) with dynamic eddy viscosity SGS; and
(c) with Smagorinsky SGS. Contour-level increment is 100.
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Figure 5. Vorticity contours at selected downstream location for case: (a) without SGS; (b) with dynamic
eddy viscosity SGS; and (c) with Smagorinsky SGS. Contour-level increment is 100.

Table I. E�ect of SGS on �Tx=� and rmsu′=rmsv′ at x=H =0:6.

Cr Peak �Tx=� at rmsu′=rmsv′

last time-step at peak

0 (without SGS), � 0 0.812
Dynamic calculations, / 10 0.808
0.12 (Smagorinsky SGS) 24 0.788
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Figure 6. Comparison of pro�les with and without SGS model: (a) rms longitudinal
velocity �uctuations; (b) rms lateral velocity �uctuations; (c) negative cross-stream

correlation; and (d) rms vorticity �uctuations at x=H =0:6.

�ow is slightly a�ected by SGS as found in Reference [22]. The peak rms!′ in Figure 6(d)
is lowered as the dissipative e�ect of SGS is increased, consistent with the lower contour
level peaks in Figures 4(a)–(c) and 5(a)–(c). Table I also shows that the ratio rmsu′=rmsv′

for LES using dynamic eddy viscosity model is closer to the case without SGS than the LES
with Smagorinsky model. Furthermore, Figures 7(a)–(b), show rmsu′=�U and rmsv′=�U
pro�les for LES using Smagorinsky SGS. By comparing with the pro�les obtained using
dynamic eddy viscosity SGS in Figures 3(b)–(c), it is noted that the pro�les obtained using
the dynamic procedure have a better self-similarity.
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6. SCALAR FIELD RESULTS

The scalar �eld calculations are conducted on rectangular computational domain identical
to the �ow �eld computational domain. The initial number of particles per grid is Ng=36
which is within the range 20–200 suggested in Reference [30]. The mean concentration, rms
concentration �uctuations and FDFs are approximated at the nodes using particles located in
rectangular boxes centred at nodes (Figure 2(a)). The boxes do not overlap, i.e. the box size
is less than half the grid size. The approximation becomes more accurate as the box size
is decreased and as the number of particles is increased. In this study, the box size is 0.4
of grid size. For each particle, at time t=0 the concentration is initialized as cL=1:0 on
the low-speed stream and cU =0:0 on the high-speed stream. Both Smagorinsky SGS and
dynamic eddy viscosity SGS are tested. Two in�ow boundary conditions for scalar �eld are
also tested, stepwise and error function with yoc=31:8 cm in Equation (28). The run using
dynamic eddy viscosity SGS model with error function as boundary condition for scalar is
chosen as the base run.
The FDF solution requires specifying the constants ScT , C	, and the mixing model. For the

base run, the modi�ed Curl model is used with C	=3:0 and ScT =0:7 similar to the ones
used in Reference [31]. E�ects of Smagorinsky SGS, ScT , C	 and in�ow boundary conditions
on mean concentration, rms concentration �uctuations and FDF will be discussed.
To achieve statistically stationary solutions, the Monte Carlo simulation is run for 14 resi-

dence times similar to the �ow �eld run. Firstly, the �ow is allowed to develop in the �rst
two residence times, then the mean concentration is computed over the next four residence
times. The rms concentration �uctuations and FDF are computed over the next eight residence
times.
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6.1. Mean concentration, RMS concentration �uctuations and concentration spread for
base run

Figures 8(a)–(b) show the mean concentration (�) plotted as a function of the similarity
variable �c=(y−yc)=(x−xvc), where yc is the concentration centreline at streamwise location
x, and xvc is the x location of the virtual origin for concentration. Figures 8(a) and (b)
show that the results of the simulation are close to the experiment of M and B [32] and
to the simulation of Zhou and Pereira [31], respectively, for 0:56x=H60:6. For x=H =0:4,
the mean concentration pro�le is in the non self-preserving region unlike the mean velocity
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Figure 8. (a, b) Mean concentration at three downstream locations for base run;
(c) mean concentration pro�le and normalized mean velocity pro�le at x=H =0:6 for

base run; and (d) spread of concentration and velocity for base run.
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pro�le which is in the self-preserving region (see Figure 3(a)). Furthermore, the free stream
concentration extends further on the high-speed side (�c¿0) than on the low-speed side
(�c¡0). This shows that the mixing layer entrains more particles from the high-speed �uid.
The mean concentration pro�les exhibit triple in�ection point for x=H =0:5 and 0.6 similar
to References [31, 32]. However for x=H =0:4, the triple in�ection point is less pronounced,
because the �ow is still developing. Figure 8(c) shows the mean concentration pro�le and
the mean velocity pro�le at x=H =0:6. The concentration mixing region extends further into
the free stream than does the momentum mixing region as found in Reference [32]. This
result is consistent with Figure 8(d), which indicates that the concentration spread is higher
than the velocity spread. The velocity spread is characterized by the region between 0:05UL

and 0:95UH and the concentration spread by the region with concentration between �=0:05
and 0.95.
The rms concentration �uctuations pro�les (�rms) are shown as a function of �c at three

downstream positions in Figures 9(a) and (b). The rms concentration �uctuations is indicative
of the degree of homogeneity of the �ow. If the two streams were composed of immiscible
substances, then the rms concentration �uctuations would have a maximum value of 0.5. The
calculated rms concentration �uctuations is lower than 0.5 but slightly higher than the mea-
surements of M and B [32] in Figure 9(a) and close to the results of Zhou and Pereira [31] in
Figure 9(b). The rms concentration �uctuation pro�les exhibit bimodal shape and asymmetry
with respect to �c=0 with values on the high-speed side (�c¿0) lower than the low-speed
side (�c¡0). This indicates that �uid mixing is higher on the high-speed side. In the simula-
tion, the bimodal shape in the �rms pro�les together with the asymmetry with lower �rms on
the high-speed side were obtained, when error function was used as in�ow boundary condition
for scalar �eld (see Section 6.5).
In order to interpret the asymmetry with respect to �c=0 in the rms pro�les, the instanta-

neous mixing frequency in the cross-stream location is shown in Figures 10(a)–(d) at several
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Figure 9. (a, b) rms concentration �uctuations pro�les at three downstream locations for base run.
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Figure 10. Pro�les of mixing frequency versus �c at several downstream locations: (a) x=H =0:40; (b)
x=H =0:45; (c) x=H =0:50; and (d) x=H =0:60.

streamwiselocations from x=H =0:4–0:6. The mixing frequency is asymmetric about the con-
centration centreline with higher values biased toward the high-speed side therefore leading
to lower �rms on the high-speed side in Figures 9(a) and (b). Therefore, the asymmetry in
mixing frequency is responsible for the asymmetry in �rms as shown also by Vanormelingen
and Den Bulck [50].

6.2. Mean and RMS concentration �uctuations pro�les for Smagorinsky SGS model
Figures 11(a)–(d) show that the pro�les of mean concentration and rms concentration �uc-
tuations, using the Smagorinsky SGS with Cr =0:12 together with the experiment of M and
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Figure 11. Mean concentration and rms concentration �uctuations pro�les at three
downstream locations using Smagorinsky SGS: (a, b) mean concentration pro�les; and

(c, d) rms concentration �uctuation pro�les.

B [32] and simulation of Zhou and Pereira [31]. The pro�les are similar to the results ob-
tained using dynamic eddy viscosity SGS. For x=H =0:4, the mean concentration pro�le in
Figures 11(a) and (b) is closer to the self-similarity region, unlike the results obtained using
the dynamic eddy viscosity SGS in Figures 8(a) and (b). This is probably due to the fact
that the concentration �eld develops faster when Smagorinsky SGS is used because it is more
dissipative. Calculations with Smagorinsky SGS yield higher turbulent di�usivities and higher
mixing frequency than the ones obtained using dynamic SGS.

6.3. E�ect of turbulent Schmidt number

Numerical tests were performed to investigate the e�ects of varying turbulent di�usivities
using ScT =0:3 and 1.0 with other parameters similar to base run. The range of ScT includes
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the value of 0.5 used for plane mixing layer [51] and the value of 0.35 for the scalar mixing
layer experiment of Bilger et al. [52]. In Figure 12(a), the mean concentration pro�les show
that the position of in�ection points on the high-speed side moves further on high-speed side
for ScT =0:7 as compared to the pro�le with ScT =1:0, and that the triple in�ection point
pro�le is less pronounced for ScT =0:3. The pro�le with ScT =0:7 is closer to the experiment
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(c) e�ect of constant (C	) in mixing frequency, at x=H =0:60. Comparison of rms concen-
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(C	) in mixing frequency, at x=H =0:60.
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of M and B [32] and to the simulation of Zhou and Pereira [31] as shown in Figures 8(a)
and (b). Figure 12(b) shows that the pro�les of rms concentration �uctuations are lowered
as ScT is decreased from 1.0 to 0.3, because mixing frequency increases as ScT decreases.
Also the pro�les spread further into the free stream on high speed for ScT = 0.7 and 1.0 as
compared to ScT =0:3.

6.4. E�ect of constant in mixing frequency

The e�ect of constant in mixing frequency was investigated by comparing the base run results
(C	=3:0) with the results obtained using C	=9:0 keeping all other parameters similar to
base run. The mean concentration pro�les in Figure 12(c) exhibit triple in�ection point for
both C	=9:0 and 3.0. In Figure 12(d), the pro�le of the rms concentration �uctuations with
C	=9:0 is lower than the base run with C	=3:0. This result is expected because the mixing
is enhanced as C	 is increased. This causes the pro�le of rms concentration �uctuations to
be lowered.

6.5. E�ect of in�ow boundary condition

Several combinations of in�ow boundary conditions were tested. Error function and laminar
boundary layer were tested for �ow �eld, and stepwise and error function for scalar �eld.
Results are presented in Figures 13(a)–(d) and 14(a)–(f). Figures 13(a)–(d) compare the �ow
�eld characteristics, i.e. (U−UL)=(UH −UL), rmsu′=�U , rmsv′=�U and (−u′v′=�U 2) pro�les,
obtained using the laminar boundary layer with the ones obtained using the error function, at
x=H =0:5 and 0.6. The di�erence in pro�les due to the di�erent in�ow boundary conditions
for �ow �eld is quite small. Therefore the velocity characteristics are not signi�cantly a�ected
by the in�ow boundary conditions tested.
Figures 14(a)–(d) compare the runs using stepwise pro�le as in�ow boundary condition

for scalar�eld with laminar boundary layer (case 1) and error function (case 2) for �ow �eld.
Figures 14(a) and (c) show that the mean pro�les for cases 1 and 2 spread less than the base
run. Figures 14(b) and (d) show that the rms concentration �uctuations pro�les for cases 1
and 2 have higher peak values on the high-speed side (�c¿0) as compared to the low-speed
side (�c¡0), which is opposite to the results obtained using the base run.
Figures 14(e) and (f) compare the runs using error function as in�ow boundary condition

for scalar �eld with laminar boundary layer (base run) and error function (case 3) for �ow
�eld. The mean concentration pro�les in Figure 14(e) show that a portion of the graph for
case 3 on the high-speed side is lower than the base run. Figure 14(f) indicates that the
trend in the rms concentration �uctuations pro�les is almost una�ected by in�ow boundary
condition for �ow �eld (base run or case 3), except that the pro�le for case 3 spreads further
on both the high-speed side (�c¿0) and low-speed side (�c ¡ 0).

6.6. Filtered density function

Each particle of the ensemble Nb (total number of particles in the box centred at each node)
is identi�ed by a value of the concentration c with 06c61. In order to obtain the probability,
the range of c (0–1) is subdivided into 100 windows, so that any one of the particles belongs
to an interval based on its value of c. The probability of �nding a particle having concentration
c within an interval
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negative cross-stream correlation.

� � c ≺ �+�� is written as

p(�)��=
n
Nb

where n is the number of elements in the interval and p(�) is the FDF.
The FDF of passive scalar obtained using dynamic eddy viscosity SGS (base run) are

shown in Figures 15(a), (c), and (e) and the corresponding mean concentration pro�les in
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Figure 15. Filter density functions at several cross-stream locations for base run: (a)
x=H =0:4; (c) x=H =0:5; (e) x=H =0:60. Mean concentration pro�le for base run:

(b) x=H =0:4; (d) x=H =0:5; and (f) x=H =0:6.
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Figures 15(b), (d), and (f) for x=H =0:4; 0:5 and 0.6, respectively. At x=H =0:40, the FDF
in Figure 15(a) have U shape in qualitative agreement with the experiment of Pickett and
Ghandhi [35] in the early part of the �ow development. The mean concentration pro�le in
Figure 15(b) indicates that the triple in�ection point pro�le is starting to appear. As the
�ow develops from x=H =0:5 (Figure 15(c)) to x=H =0:6 (Figure 15(e)), the FDF exhibit
intermediate peaks on high-speed side (�¡0:5) that are non-marching. This indicates that the
mixing layer entrains and subsequently mixes more particles from the high-speed side. These
results are in agreement with the results of Koochesfahani and Dimotakis [53] and Pickett and
Ghandhi [35]. Furthermore the mean concentration pro�les in Figures 15(d) and (f) indicate
that the triple in�ection pro�le becomes more pronounced as the �ow develops from x=H =0:5
to 0.6.
Figures 16(a)–(d) compare FDF of four cases: e�ect of downstream location, e�ect of

SGS, e�ect of C	 and e�ect of ScT . E�ect of downstream location shown for base run in
Figure 16(a), at two y locations above (�c¿0) and below (�c¡0) centreline, show that the
peak moves from �≈ 0:18 for x=H =0:5 to �≈ 0:23 for x=H =0:6. Also the peak values are
higher at x=H =0:6, i.e. at the downstream location which is further away from the edge of
the splitter plate. These results are in qualitative agreement with M and B [32]. Figure 16(b)
compares FDF obtained using Smagorinsky SGS with the ones obtained using dynamic eddy
viscosity SGS (base run). The peak obtained using Smagorinsky SGS is higher than the peak
obtained using the dynamic eddy viscosity SGS. Also the position of the peak is closer to the
mean value (�=0:5) when Smagorinsky SGS is used. This is probably due to the fact that
Smagorinsky SGS is more dissipative. In the calculations, Smagorinsky SGS yields higher
mixing frequency than that of dynamic SGS. Higher mixing results in higher probabilities at
peaks and also peak positions closer to the mean value (�=0:5). Figure 16(c) compares FDF
obtained using C	=9:0 in mixing frequency with base run (C	=3:0). The peak is higher
when C	=9:0 and slightly closer to the mean value (�=0:5). This result is expected because
mixing (mixing frequency) is enhanced as C	 is increased. The e�ect of varying ScT is shown
in Figure 16(d). As ScT is decreased, the peak values are higher and closer to the mean value
(�=0:5). This result is due to the fact that mixing (mixing frequency) is enhanced as ScT
decreases.
The FDF trends are sensitive to scalar �eld in�ow boundary conditions. In addition to the

error function used in base run, a stepwise pro�le was tested. The FDF obtained using the
stepwise pro�le yielded U shape FDF without peak, unlike the FDF for base run in Figures
16(a), (c), and (e).

7. COMPUTATIONAL REQUIREMENTS AND SENSITIVITY TO PARAMETERS

Table II shows the computational time and memory requirements for several simulations
obtained using a PC with AMD Athlon 64 processor. The VIC’s computational time is signif-
icantly less than that of the VIC-FDF, it is about 2% of the VIC-FDF. Computational time for
�nite di�erence-FDF simulation with same numerical and �ow parameters is not available in
order to compare with the present VIC-FDF. It is expected that CPU time of �nite di�erence-
FDF be less than that of VIC-FDF because the Lagrangian procedure in VIC requires higher
CPU time. In the present study, CPU time of VIC is much less than VIC-FDF, therefore
the advantage of �nite di�erence-FDF over VIC-FDF, as it requires less CPU time, is minor.
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Figure 16. Comparison of �ltered density functions: (a) e�ect of downstream location,
x=H =0:5 and x=H =0:6; (b) e�ect on SGS at x=H =0:6; (c) e�ect of C	 at x=H =0:6;

and (d) e�ect of ScT at x=H =0:6.

Furthermore, Table II shows that the memory requirements of the VIC is about 5% of the
VIC-FDF.
The sensitivity of the velocity pro�les in Figure 3 and the concentrations pro�les in

Figures 8, 9 and 15 to changes in grid number, in vortex blob number, and particles in
Monte-Carlo technique has been investigated. The parameters used for the base run are cho-
sen in such a way that the computational time was reasonable as shown in Table II. Grid
number convergence was tested by reducing the grid by half, i.e. 128× 128, keeping all other
numerical parameters identical to the base run. Therefore the width and the length of the
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Table II. Computational times and memory requirements for
the 2D mixing layer.

Simulation CPU time (min) Memory (MB)

VIC 108 22
VIC-FDF (Smagorinsky) 5227 457
VIC-FDF (Dynamic) 5320 458

computational domain was reduced by half. The velocity and concentration pro�les in the
self-preserving region were insensitive to change in grid number. The sensitivity to change in
the number of vortex blob was tested by doubling the number of vortex blobs from 2560 (for
base run) to 5120, keeping the other numerical parameters identical to the base run. The pro-
�les were insensitive to doubling the number of vortex blobs. Also, the sensitivity to change
in the number of particles in the Monte-Carlo technique has been investigated by increasing
the number of particles from Ng=36 (base run) to Ng=49. The results were insensitive to
variation in Ng.

8. CONCLUDING REMARKS

A LES based on the di�usion-velocity method for the solution of the vorticity transport has
been used in conjunction with the �ltered density function to predict the �ow �eld and scalar
�eld of spatially growing mixing layer. The two-dimensional vortex-in-cell in conjunction
with the Smagorinsky SGS model and dynamic eddy viscosity SGS model has been used to
calculate the �ltered �ow �eld. The FDF transport equation has been solved using Lagrangian
Monte-Carlo scheme.
The LES methodology based on vortex method results in the dynamic eddy viscosity SGS

being less dissipative than the Smagorinsky SGS as found in previous works based on mo-
mentum equation. The dissipative e�ect of the SGS model was demonstrated by lower level
of spanwise vorticity contours, lower cross-stream pro�les of spanwise vorticity, lower cross-
stream pro�les for rms longitudinal and lateral velocity �uctuations as the eddy viscosity from
SGS is higher. The self-similarity of rms longitudinal and lateral velocity �uctuations obtained
using dynamic eddy viscosity SGS is better than the ones obtained using Smagorinsky SGS.
The mean and rms concentration �uctuations pro�les in the self-preserving region are close

to the results of previous numerical simulation and experiment. The mean concentration pro-
�les exhibit triple in�ection point. The scalar mixing region extends further into the free
stream than does the momentum mixing region, indicating enhanced transport of scalar over
momentum. The rms concentration pro�les exhibit asymmetry and bimodal shape because
high-speed �uid is mixing at a faster rate than low-speed �uid. The rms concentration pro-
�les obtained using Smagorinsky SGS are lower than the ones obtained using dynamic eddy
viscosity SGS because of increased mixing when Smagorinsky SGS is used. As the �ow
develops in the downstream direction, the FDFs develop from an initial U shape to FDFs ex-
hibiting peaks biased toward the high-speed side with non-marching behaviour. This indicates
that the mixing layer entrains and subsequently mixes larger quantities of high-speed �uid.
The FDFs obtained using Smagorinsky SGS have peaks with higher probabilities and closer
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to the mean value (�=0:5) than the ones obtained using dynamic eddy viscosity SGS. The
mean concentration pro�les, rms concentration �uctuations pro�les and FDFs are sensitive to
in�ow boundary conditions with the combination of laminar boundary layer for �ow �eld and
error function for scalar �eld yielding pro�les trends in agreement with previous experiment
and simulation.
For the present mixing layer it is suggested that the VIC is advantageous over the �nite

di�erence because it is more robust and has less numerical di�usion keeping in mind that the
computational requirements of VIC or �nite-di�erence constitute a small percentage of the
computational requirements of the VIC-FDF or �nite di�erence-FDF, respectively.
Regarding the extension of the present 2D VIC to the physically more realistic 3D VIC,

there are basically three di�erences. The �rst di�erence is that the velocity-vorticity formu-
lation is used in 3D instead of stream function-vorticity formulation commonly used in 2D.
The second di�erence is the additional stretching term in 3D, which is calculated on the
grid and projected back to the particle as a source of vorticity [54], using an interpolation
technique. The third di�erence is the extension of the di�usion velocity method to 3D which
is problematic. A di�usion velocity vector for each component of vorticity appears in the
vorticity transport. This may be numerically intractable unless the vector �eld �! (Laplacian
of vorticity) is decomposed into a vector parallel to ! and a vector orthogonal to ! [55].
This challenge is presently being undertaken.
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